google.com, pub-2829829264763437, DIRECT, f08c47fec0942fa0

Friday, December 15, 2017

When Stars Raise From the Ashes

When Stars Raise From the Ashes


Hydrogen fusion cannot continue forever: in the Sun or any other star, there is only so much hydrogen fuel in its hot interior. The fate of a star, the end of its life cycle, depends very much on its initial mass. If, after whatever matter it has lost to space, a star retains two or three times the mass of the Sun, it ends its life cycle in a startlingly different mode than the Sun. But the Sun’s fate is spectacular enough. When the central hydrogen has all reacted to form helium, five or six billion years from now, the zone of hydrogen fusion will slowly migrate outward, an expanding shell of thermonuclear reactions, until it reaches the place where the temperatures are less than about ten million degrees. The hydrogen fusion will shut itself off. Meanwhile the self -gravity of the Sun will force a renewed contraction of its helium-rich core and a further increase in its interior temperatures and pressures. The helium nuclei will be jammed together still more tightly, so much so that they begin to stick together, the hooks of their short-range nuclear forces becoming engaged despite the mutual electrical repulsion. The ash will become fuel, and the Sun will be triggered into a second round of fusion reactions.

This process will generate the elements carbon and oxygen and provide additional energy for the Sun to continue shining for a limited time. A star is a phoenix, destined to rise for a time from its own ashes. Stars more massive than the Sun achieve higher central temperatures and pressures to their late evolutionary stages. They are able to rise more than once from their ashes, using carbon and oxygen as fuel for synthesizing still heavier elements.

A star is a phoenix destined to rise for a time from its own ashes. Image: © Elena

Under the combined influence of hydrogen fusion in a thin shell far from the solar interior and the high temperature helium fusion in the core, the Sun will undergo a major change: its exterior will expand and cool. The Sun will become a red giant star, its visible surface so far from its interior that the gravity at its surface grows feeble, its atmosphere expanding into space in a kind of stellar gale. When the Sun, ruddy and bloated, becomes a red giant, it will envelop and devour the planets Mercury and Venus – and probably the Earth as well. The inner solar system will then reside within the Sun.

Billions of years from now, there will be a last perfect day on Earth. Thereafter the Sun will slowly become red and distended, presiding over an Earth sweltering even at the poles. The Arctic and Antarctic icecaps will melt, flooding the coasts of the world. The high oceanic temperatures will release more water vapor into the air, increasing cloudiness, shielding the Earth from sunlight and delaying the end a little. But solar evolution is inexorable. Eventually the oceans will boil, the atmosphere will evaporate away to space and a catastrophe of the most immense proportions imaginable will overtake our planet.

No comments:

Post a Comment

You can leave you comment here. Thank you.