How the Brain Decodes the Skin Sensations
Bach-y-Rita determined that skin and its touch receptors could substitute for a retina, because both the skin and the retina are two-dimensional sheets, covered with sensory receptors, that allow a “picture” to form on them.
It's one thing to find a new data port, or way of getting sensations to the brain. But it's another for the brain to decode these skin sensations and turn them into pictures. To do that, the brain has to learn something new, and the part of the brain devoted to processing touch has to adapt to the new signals. This adaptability implies that the brain is plastic in the sense that it can reorganize its sensory perceptual system.
If the brain can reorganize itself, simple localizationism cannot be a correct image of the brain. At first even Bach-y-Rita was a localizationist, moved by its brilliant accomplishments. Serious localizationism was first proposed in 1861, when Paul Broca, a surgeon, had a stroke patient who lost the ability to speak and could utter only one word. No matter what he was asked, the poor man responded, “Tan, tan,” When he died, Broca dissected his brain and found damaged tissue in the left frontal lobe. Skeptics doubted that speech could be localized to a single part of the brain until Broca showed the the injured tissue, then reported on other patients who had lost the ability to speak and had damage in the same location. That place came to be called “Broca's area” and was presumed to coordinate the movements of the muscles of the lips and tongue. Soon afterward another physician, Carl Wernicke, connected damage in another brain area farther back to a different problem: the inability to understand language. Wernicke proposed that the damaged area was responsible for the mental representations of words and comprehension. It came to be known as “Wernicke's area.” Over the next hundred years localizationism became more specific as new research refined the brain map.
"We see with our brains, not with our eyes" (Bach-y-Rita, surgeon brain neuroplastician.) Illustration by Elena. |
Unfortunately, though, the case for localizationism was soon exaggerated. It went from being a series of intriguing correlations (observations that damage to specific brain areas led to the loss of specific mental functions) to a general theory that declared that every brain function had only one hardwired location – an idea summarized by the phrase “one function, one location,” meaning that if a part was damaged, the brain could not reorganize itself or recover that lost function.
A dark age for plasticity began, and any exceptions to the idea of “one function, one location” were ignored. In 1868 Jules Cotard studied children who had early massive brain disease, in which the left hemisphere (including Broca's area) wasted away. Yet these children could still speak normally. This meant that even if speech tended to be processed in the hemisphere, as Broca claimed, the brain might be plastic enough to reorganize itself, if necessary. In 1876 Otto Soltmann removed the motor cortex from infant dogs and rabbits – the part of the brain thought to be responsible for movement – yet found they were still able to move. These findings were submerged in the wave of localizationist enthusiasm.
Bach-y-Rita came to doubt localizationism while in Germany in the early 1960s. He had joined a team that was studying how vision worked by measuring with electrodes electrical discharge from the visual processing area of a cat's brain. The team fully expected that when they showed the cat an image, the electrode in its visual processing area would send off an electric spike, showing it was processing that image. And it did. But when the cat's paw was accidentally stroked, the visual area also fired, indicating that it was processing touch as well. And they found that the visual area was also active when the cat heard sounds.
The Brain that Changes Itself by Norman Doidge, M.D. Stories of Personal Triumph from the Frontiers of Brain Science.
The Brain that Changes Itself by Norman Doidge, M.D. Stories of Personal Triumph from the Frontiers of Brain Science.
Nobody will torture cats. Photo by Elena. |